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Abstract

This paper proposes a model of ambiguous language. We consider a cheap talk

game in which a (possibly ambiguity averse) sender who faces an ambiguity averse

receiver is able to randomize according to unknown probabilities. We show that un-

der fairly general conditions, for any standard influential communication equilibrium

there exists a Pareto-dominant equilibrium featuring an ambiguous (i.e. Ellsbergian)

communication strategy. Ambiguity, by triggering worst-case decision-making by the

receiver, shifts the latter’s response to information towards the sender’s ideal action,

thus encouraging finer information transmission.
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1 Introduction

Ambiguous language is a recurrent feature of economic and political communication.

The term Fedspeak refers to the cryptic language used by chairmen of the Federal Reserve

Board in stating their economic prognosis or their intended course of action. Politicians

as well as experts similarly often use language that is difficult to parse and gives rise to

different interpretations. On the face of it, this is puzzling because such language appears

to gratuitously decrease the precision of transmitted information as well as impose costs

of interpretation on the receiver. In the standard cheap talk game à la Crawford and Sobel

(1982) that we consider, we find that ambiguous language on the contrary plays a positive

role. It improves information transmission and increases the payoffs achievable by both

parties.

An informed sender (S) faces an uninformed receiver (R) and S is known to favour a

higher action than R for any realization of the state. R is ambiguity averse and applies

Max-Min expected utility in the presence of ambiguity. We show that under fairly gen-

eral conditions, S and R can both benefit from the use of an ambiguous communication

strategy according to which S voluntarily conditions her messages on the privately ob-

served realization of a draw from an urn containing a distribution of ball colors unknown

to R (a so-called Ellsberg urn). We find that for any influential communication equilib-

rium featuring a standard communication strategy, there exists an equilibrium featuring

an ambiguous communication strategy which strictly Pareto-dominates it. Ambiguity

mitigates conflict by shifting upwards R’s response to information and thus renders finer

information transmission incentive compatible. S gains because she effectively faces a

less misaligned receiver. R also benefits because her suboptimal response to informa-

tion (from an ex ante perspective) is more than compensated by the availability of more

information.

We now provide more detail regarding the underlying mechanism. In the classical

Crawford and Sobel (1982) model, preference misalignment causes noisy communica-

tion. Any equilibrium outcome can be implemented via a so-called partitional equilib-

rium. The state space is cut up into a set of adjacent intervals 1, ..., N and S simply reveals

the interval in which the state is located by sending mi when the state is in interval i. If
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preference misalignment is reduced, the finest equilibrium partitioning becomes finer and

yields a higher expected payoff for both parties. This paper identifies a new type of com-

munication strategy which, by creating local Knightean uncertainty, effectively allows R

to commit to acting as if her preferences were less misaligned than they are. Such a strat-

egy is constructed as follows. Given a set of standard intervals 1, ..., N, subdivide every

standard interval i into two adjacent subintervals i− and i+ mapping into two different

messages mA
i and mB

i . For each standard interval i, let S randomize between one pure

messaging rule mapping from {i−, i+} into
{

mA
i , mB

i
}

and the reciprocal rule conditional

on the privately observed color (red or non-red) of the ball drawn from the available Ells-

berg urn. Given this strategy, upon observing mA
i and mB

i , R is Knighteanly uncertain as

to whether the state is more likely situated in i− or i+. Being ambiguity averse, R acts

so as to hedge herself against ambiguity and follows the Max-Min decision rule. This

involves evaluating every action according to its lowest (worst case) expected utility un-

der all possible priors (i.e. all possible compositions of the urn) and picking the action

that maximizes the thus constructed objective function. The key mechanism is that if the

left subinterval i− is significantly larger than the right subinterval i+, so that the state is

ex ante much more likely to be situated in i− than in i+, R acts as if subjectively over-

weighting the event that the state is located in the right subinterval i+. The reason is that,

being driven by worse-case thinking, R evaluates all low actions as if certain that the state

is located in i+, no matter how unlikely this event. As a result, R takes a higher action

than the expected utility maximizing action conditional on the information that the state

is located in the standard interval i.

For the sake of concreteness, consider the following example of an ambiguous strat-

egy. S privately observes a state ω ∈ [0, 1], drawn from a commonly known distribution,

which is S’s assessment of growth prospects for the economy. The color of the ball drawn

from the Ellsberg urn is S’s mood whose distribution is unknown to R. Divide the [0, 1]

segment into four adjacent subintervals 1, ..., 4. If S draws a red ball she uses the commu-

nication strategy {mediocre,poor,sustained,strong}, where the ith message in this ordered set

is sent on the ith subinterval. If S instead draws a black ball she instead uses the com-

munication strategy {poor,mediocre,strong,sustained}. Hence, in terms of the explanation in

the previous paragraph the first two subintervals together constitute one standard inter-
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val and the next two subintervals constitute another standard interval. Conditional on

S randomizing in such a way, R’s updating exhibits the following characteristics. If the

received message m belongs to {poor,mediocre} then R now knows that ω is located one

of the first two subintervals but is Knighteanly uncertain as to whether it is actually lo-

cated in the first or the second. If on the other hand m belongs to {sustained,strong}, R now

knows that ω is located in the third or fourth subinterval but is Knighteanly uncertain

as to whether it is actually located in the third or the fourth. If the second subinterval is

substantially smaller than the first, R’s (identical) best response to poor or mediocre will be

higher than her best response to the information that ω is located in one of the first two

subintervals. An identical argument holds for the two remaining messages and subinter-

vals.

We contribute to the literature by studying Ellsbergian strategies within the classical

Crawford and Sobel (1982) cheap talk game (CS in what follows). In so-doing, we build on

Azrieli and Teper (2011), Bade (2010) as well as Riedel and Sass (2011) who introduce the

concept of ambiguous strategies and equilibrium under such strategies1 but d i o not apply

it to cheap talk. Bose and Renou (2014) states a revelation principle for environments

where the principal can use an Ellsbergian device to garble his messages to agents. The

authors furthermore obtain a full surplus extraction result for the monopolistic screening

problem. While the ambiguous communication strategies that we introduce build on

Bose and Renou (2014), main differences are that we assume communication without

commitment and that our focus is on welfare implications within the Crawford and Sobel

(1982) game.

Kellner and Le Quement (2014) examines cheap talk with an ambiguous prior dis-

tribution of the state. The latter and the present paper share the feature that S-optimal

equilibria exhibit a communication strategy that is not describable as a standard parti-

tional strategy but rather as a randomization across such strategies. Randomization fol-

lows a known distribution in Kellner and Le Quement (2014) and instead an ambiguous

distribution in the present paper. While randomization serves to hedge S against exoge-

nous ambiguity in Kellner and Le Quement (2014), it serves to induce R to hedge against

1See also earlier work by Lo (1996) and Klibanoff (1996) on equilibrium in ambiguous beliefs.
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endogenous ambiguity in the present paper.

Board, Blume and Kawamura (2007) analyze vagueness generated by a noisy commu-

nication channel that causes sent messages to give rise to a distribution over observed

messages. The authors construct equilibria that are more informative than the most infor-

mative equilibria of the noiseless model. Equilibria are partitional and R’s expectation of

S’s type given a message is a weighted average of the conditional expectation given the

implied interval in the absence of transmission error and the expectation conditional on

an error. As a result, R’s expectation given a message indicating a low interval is distorted

upwards towards the ex ante mean. For low values of the state, the de facto preference

misalignment of S and R is thus reduced compared to the noiseless setup. The key simi-

larity between this paper and ours resides in the fact that noise helps R de facto commit

to taking a higher action in response to information than she would in the absence of

noise. In our paper, noise however has a different origin (it is voluntarily inserted by S),

it comes in a different form (it is ambiguous) and it affect’s R’s behavior via a different

motive (hedging against ambiguity).

Our results also relate to Chen and Gordon (2015). The authors define a nestedness

relation between sender-receiver games, one game being nested within the other if the

optimal actions of players are closer in the first. They identify general conditions under

which the nested game yields more information transmission and higher expected pay-

offs for S and R. Roughly speaking, our cheap talk game with Ellsbergian communication

strategies can be interpreted as being (endogenously) nested within the same game with

standard communication strategies.

This paper is organized as follows. Section 2 introduces the model. Section 3 states

central (and with one minor exception) preexisting results for the standard case. Sec-

tion 4 analyzes the general Ellsbergian model and contains our main result concerning

the existence of Pareto-improving Ellsbergian equilibria. Section 5 examines the special

case of the Uniform-Quadratic setup and studies specific analytically tractable subclasses

of Ellsbergian communication strategies, with an eye to examining questions left unan-

swered within the general setup. Section 6 discusses the robustness of our results to key

restrictive assumptions.
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2 Model

There are two players, a sender S and a receiver R. The state ω is privately known to S

and drawn from a commonly known distribution endowed with the continuously differ-

entiable cdf F and density f on the support [0, 1]. S privately draws a ball from an Ellsberg

urn containing balls of n different colors numbered 1 to n. Let ρi denote the proportion

of color i balls. The vector ρ = (ρ1, ..., ρn) is Knighteanly unknown to S and R. Letting

∆n denote the set of all vectors ρ = (ρ1, ..., ρn) satisfying ∑n
i=1 ρi = 1, the Ellsberg urn

is maximally ambiguous in the sense that any ρ in ∆n is considered possible. Let θ be a

random variable taking value θi if the drawn ball has color i. The timing of the game is as

follows. S observes ω and θ. S picks a message m ∈ M, where M is a rich message space

with cardinality |M|. R picks an action a ∈ R after observing m. Given a and ω, the utility

function of J ∈ {S, R} is denoted U J(a, ω) and

US (a, ω) = G (ω+ β(ω)− a) ; UR (a, ω) = G (ω− a) .

The function G(x) is a twice differentiable, concave and single peaked function of x

with a peak a x = 0. There is an ε > 0 such that β(ω) > ε for any ω ∈ [0, 1]. For two bias

function β(ω) and β̂(ω) such that β̂(ω) > β(ω) ∀ω , we write β̂ > β. For given β and

ε > 0, let β+ ε denote β̂ such that β̂(ω) = β(ω) + ε ∀ω. Letting subscripts denote partial

derivatives, our setup implies that for any J ∈ {R, S} , U J
1 = 0 for some a, U J

11 < 0 and

U J
12 > 0 as in CS. Both S and R are ambiguity averse and apply the Max-Min decision

rule (Gilboa (1987), Gilboa and Schmeidler (1989)).

A standard communication strategy is given by a family q(. |ω ), ω ∈ [0, 1], of dis-

tributions. Such a family defines a distribution over M for each value of ω and is thus

a mapping [0, 1] → ∆|M|, where ∆|M| is the set of distributions over M. An Ellsbergian

communication strategy is given by a vector of standard communication strategies de-

noted (q1(. |ω ), ..., qn(. |ω )). S plays such a strategy by conditioning her choice of qi on

the value of θ, more precisely by following qi if θ = θi. A (mixed) strategy of R speci-

fies a distribution δ(. |m ) over pure actions for any m ∈ M. Letting ∆R denote the set of

distributions over R, a strategy of R is a mapping M→ ∆R.

We define an equilibrium concept that is an analogue of Perfect Bayesian equilibrium
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for the case where S can use an Ellsbergian strategy. Our equivalents of the sequential

rationality and consistent beliefs conditions reduce to the following requirements here.

The strategy of S is sequentially rational, given the strategy of R. R applies the Max-

Min rule conditional on updated beliefs. As to belief formation, R performs prior by

prior Bayesian updating conditional on knowledge of S’s equilibrium strategy2. Note

that S faces no ambiguity at any information set where she is called upon to act. This

is true because S observes θ before choosing a message. When S chooses her message

after observing ω and θ, there is thus no mixed strategy that does better than all pure

strategies in its support, which might be the case if she faced ambiguity. The incentive

compatibility conditions for S are thus identical to those defined in the classical CS game

without Ellsbergian randomization.

Formally, a strategy profile (q1(m |ω ), ..., qn(m |ω )) , δ(a |m ) and a belief system consti-

tute an equilibrium if the following conditions hold. First,
∫

M qi(m |ω )dm = 1 ∀ (ω, i) ∈
[0, 1]× {1, ..., n} , where any m∗ in the support of qi(m |ω ) solves

max
m∈M

∫
a∈R

US(a, ω)δ(a |m )da. (1)

Second, for each m, δ∗ solves

max
δ∈∆R

min
ρ∈∆n

∫ 1

0

(∫
a∈R

UR(a, ω)δ(a |m )da
)

p(ω |m, ρ )dω, (2)

where

p(ω |m, ρ ) =

∑
i∈{1,...,n}

p(θi |ρ )qi(m |ω ) f (ω)∫ 1
0 ∑

i∈{1,...,n}
p(θi |ρ )qi(m |t ) f (t)dt

is R’s posterior belief given message m and urn composition ρ.

We follow Sobel (2013) in distinguishing between informative, influential and payoff-

relevant communication. Communication is informative if it affects beliefs, i.e. if p(. |m, ρ )

2A consensus has yet to emerge on the right modelling of updating of ambiguity averse preferences. We

refer to Siniscalchi (2011) and Hanany and Klibanoff (2007, 2009) for a discussion of this issue. A dynamic

Ellsberg experiment by Dominiak, Dürsch and Lefort (2012) finds that more subjects satisfy consequential-

ism than dynamic consistency.
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is not constant across messages for all ρ’s. Communication is influential if it affects ac-

tions, i.e. if δ(. |m ) is not constant on the equilibrium path. Communication is payoff-

relevant if at least one agent’s ex ante expected payoff differs from that implied by R’s

ex ante payoff maximizing action. Denote by respectively πS
(

β, Ẽ
)

and πR
(

Ẽ
)

the (ex

ante) expected payoff of S and R given the decision rule implemented in equilibrium Ẽ.

The notion of ex ante expected payoffs is unproblematic as we examine equilibria featur-

ing no ex ante uncertainty regarding the implemented decision rule.

3 The standard case

Our utility functions are a special case of those assumed in CS, which allows us to directly

invoke existing comparative static results. Consider two sender utility functions featuring

respectively β and β′ with β′ > β. As shown in the following Lemma, these can be gener-

ated from a common function US(a, ω, b) satisfying the assumptions made in sections 2

and 5 of CS, these assumptions being that US(a, ω, b) is such that b is a scalar parameter

measuring interest misalignment, US
13 ≥ 0 everywhere and US(a, ω, 0) = UR(a, ω).

Lemma 1 Consider G, β and β′ such that β′ > β. There is a function US(a, ω, b) such that

a) US(a, ω, 1) = G (ω+ β(ω)− a), b) US(a, ω, 2) = G
(
ω+ β′(ω)− a

)
, c) US(a, ω, 0) =

G (ω− a) , d) US
13(a, ω, b) is strictly positive everywhere.

Proof: see Appendix A.

We know from CS that absent Ellsbergian strategies, any equilibrium is equivalent

to an equilibrium featuring a standard partitional communication strategy. Let there be

messages labelled {mi}N−1
i=0 . A standard partitional communication strategy is described

by a vector of thresholds t0 = 0 < t1 < ... < tN = 1 such that sender type 0 sends m0 and

all types in (ti, ti+1] send mi ∀i. We call an equilibrium featuring such a strategy a standard

equilibrium and call N its fineness. We call a standard equilibrium non-degenerate if each

action is induced by a set of types with positive measure, i.e. if 0 < t1(β, N) < ... <

tN−1(β, N) < 1. Denote by a∗ne(ti−1, ti) R’s optimal action given ω ∈ (ti−1, ti]. The profile
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of thresholds {ti}N−1
i=1 constitutes a standard equilibrium iff

US(a∗ne(ti−1, ti), ti) = US(a∗ne(ti, ti+1), ti), i = 1, ..., N − 1. (3)

Randomization by S is thus not useful in the standard case. For every equilibrium

involving randomization (for example by S conditioning her messaging on some payoff-

irrelevant private signal), there is indeed a standard partitional equilibrium implement-

ing the same decision rule.

CS states the following monotonicity condition M: If t and t̃ are two solutions of (3)

with t0 = t̃0 and t̃1 > t1, then t̃i > ti, for any i ≥ 2. CS and Szalay (2012) provide different

sufficient conditions for M. The condition is known to hold if the state is uniformly dis-

tributed, G(x) = −x2 and β(ω) = b for all ω (so-called Uniform-Quadratic specification).

Assumption 1 Condition M holds.

We next recall a set of basic properties of the model which we directly build upon in

our analysis of the Ellsbergian case. Given N, let Γ (N) denote the set of βs such that there

exists an N-intervals equilibrium.

Proposition 1 Aspects of the Crawford & Sobel (1982) characterization.

Assume that S is restricted to using standard strategies.

1. Given β, there is a finite N (β) such that for all N ≤ N (β) (for all N > N (β)), there is a

unique (there is no) N-intervals equilibrium. We call the unique N-intervals equilibrium E(β, N)

and denote its threshold profile by {ti(β, N)}N−1
i=1 .

2. N (β) ≥ N
(

β′
)

if β′ > β.

3. πR (E(β, N)) > πR(E
(

β′, N
)
) for β < β′ ∈ Γ (N) .

4. πS(β, E(β, N − 1)) < πS(β, E(β, N)) and πR(E(β, N − 1)) < πR(E(β, N)) for β ∈
Γ (N) .

Point 2 states that a higher bias leads to a weakly lower maximal number of equilib-

rium intervals. Point 3 states that given N, R’s expected payoff decreases as bias increases.

Point 4 states that given β, both S and R favor equilibria with more intervals. We now

show that given a fixed number N of equilibrium intervals, a less biased S obtains a higher

expected payoff. This result does not appear in CS and is an equivalent of Point 3 for S.
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Lemma 2 πS (β, E(β, N)) > πS(β+ ε, E (β+ ε, N)) for β, ε such that β, β+ ε ∈ Γ (N).

Proof: see Appendix A.

4 The Ellsbergian case

This section is organized as follows. We first introduce the class of Ellsbergian partitional

communication strategies and present equilibrium conditions for corresponding equi-

libria. We then provide our main result concerning the existence of Pareto-improving

Ellsbergian equilibria. We finish by noting the existence of a new type of (Ellsbergian)

babbling equilibrium.

Simple Ellsberg randomization, defined below, is a key building block of the Ellsber-

gian partitional communication strategies that we shall focus on.

Definition 1 Simple Ellsberg randomization ϕ

Let (ω, ω] ⊆ [0, 1] and c ∈ (ω, ω]. The simple Ellsberg randomization ϕ (ω, ω, c, m, m′) is

defined as follows. Given θ = θ1, send m with probability 1 if ω ∈ (ω, c) and m′ with probability

1 if ω ∈ [c, ω]. If θ 6= θ1, send m′ with probability 1 if ω ∈ (ω, c) and m with probability 1 if

ω ∈ [c, ω].

A simple Ellsberg randomization is thus a randomization with unknown probabilities

over two reciprocal partitional strategies on (ω, ω] which both partition (ω, ω] into two

subintervals (ω, c) and [c, ω]. One partitional strategy sends m in the lower subinterval

and m′ in the upper subinterval while the other partitional strategy does the opposite.

We now introduce the Ellsbergian communication strategy that shall be the focus of our

analysis.

Definition 2 Ellsbergian partitional communication strategy

Let there be two profiles of thresholds t0 = 0 < t1 < ... < tN−1 < tN = 1 and {ci}N−1
i=0

such that ci ∈ (ti, ti+1], i = 0, ..., N − 1. If ω ∈ (ti, ti+1], S applies ϕ
(
ti, ti+1, ci, mA

i , mB
i
)

,

i = 0, ..., N − 1. An Ellsbergian partitional communication strategy is thus summarized by{
{ti}N−1

i=1 , {ci}N−1
i=0

}
.
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An Ellsbergian partitional communication strategy simply adds Ellsbergian random-

ization to a standard partitional strategy and involves the following simple two-steps

procedure. S first determines the interval (ti, ti+1] in which ω is located. She then applies

the randomization ϕ
(
ti, ti+1, ci, mA

i , mB
i
)

. For a given Ellsbergian partitional strategy fea-

turing {ti}N−1
i=1 , we still refer to N as the number of intervals (or fineness). We call an

equilibrium featuring an Ellsbergian partitional communication strategy an Ellsbergian

partitional equilibrium.

Denote by a∗ne(I) R’s best response to ω ∈ I, where I is an interval of [0, 1] . We assume

the following.

Assumption 2 Let 0 ≤ ω < ω ≤ 1 and c ∈ (ω, ω]. Let I1 = (ω, c) and I2 = [c, ω]. For any

i, j ∈ {1, 2} and j 6= i,

E
[
UR(a∗ne(Ii), ω) |ω ∈ Ii

]
> E

[
UR(a∗ne(Ii), ω)

∣∣ω ∈ Ij

]
. (4)

Consider two adjacent intervals Ii and Ij. The expected payoff of action a∗ne(Ii) condi-

tional on ω ∈ Ii should thus be strictly larger than conditional on ω ∈ Ij. Technically

speaking, the assumption ensures well-behaved expected utility curves which yields a

simple characterization of R’s best responses as given in the next Lemma. We know that

Assumption 2 holds given the assumed single peaked and concave utility function if the

state is uniformly distributed, implying that it is satisfied in the Uniform-Quadratic spec-

ification of the model.

Lemma 3 Given the Ellsbergian communication strategy
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
, R’s best response

to mA
i and mB

i is identical. Denote it by a∗e (ti, ti+1, ci).

a) a∗e satisfies:

E
[
UR(a∗e , ω) |ω ∈ (ti, ci)

]
= E

[
UR(a∗e , ω) |ω ∈ [ci, ti+1]

]
b) a∗e (ti, ti+1, ci) is a continuous and strictly increasing function of ci and

a∗e (ti, ti+1, ti) < a∗ne(ti, ti+1) < a∗e (ti, ti+1, ti+1). (5)



12

Proof: see Appendix B.

There are two aspects. The first is how to identify the best response of R to mA
i and

mB
i (Point a.) and the second is how a shift to the right in ci increases this best response

(Point b.). We give some intuition for both in what follows.

Upon observing a message (say mA
i ), for each possible value of ρ1 the receiver updates

beliefs separately and constructs a corresponding expected utility curve. Whatever the ρ1

assumed, R now knows that ω ∈ (ti, ti+1]. The particular value of ρ1 assumed will affect

the weight attributed to the subintervals (ti, ci) and [ci, ti+1]. If for example ρ1 = 1, then

observing mA
i is equivalent to learning that ω ∈ (ti, ci). If instead ρ1 = 0, then observing

mA
i is equivalent to learning that ω ∈ [ci, ti+1]. If ρ1 ∈ (0, 1) , then mA

i does not allow to pin

down with certainty the subinterval in which ω is situated but will (except in knife edge

cases) imply a conditional state distribution with support over both subintervals (ti, ci)

and [ci, ti+1]. Assume for example a uniform distribution of ω and ci =
ti+ti+1

2 . In such

a case, given ρ1 =
2
3 message mA

i would be equivalent to learning that with probability
2
3 , the state is distributed uniformly on (ti, ci) while with probability 1

3 it is distributed

uniformly on [ci, ti+1].

Graphically, the Max-Min best response of R to a message (say mA
i ) is obtained as

follows. First, consider the set of expected utility curves corresponding to different ρ′1s,

which is constructed as explained above. Each of these curves is a concave and single

peaked function of R’s action a. Note that for any given a, the expected payoff given

ρ1 ∈ (0, 1) is strictly between the expected payoffs corresponding to respectively ρ1 = 0

and ρ1 = 1. Second, construct the lower envelope by simply attaching to each a the lowest

possible expected payoff across ρ′1s. A single crossing condition holds. There is a thresh-

old value of a (call this ã) such that the lowest expected payoff across ρ′1s corresponds to

ρ1 = 0 for a < ã and instead to ρ1 = 1 for a > ã. Furthermore, the ρ1 = 0 curve is increas-

ing in a below ã while the ρ1 = 1 curve is decreasing in a above ã. The constructed lower

envelope is thus maximized at the intersection point of the ρ1 = 0 and ρ1 = 1 curves,

implying that R’s Max-Min action after mA
i is ã.

Now, consider R’s best response to mB
i . This corresponds again to the intersection of

the ρ1 = 0 and the ρ1 = 1 curves, but the curve corresponding to ρ1 = 0 given mA
i now

corresponds to ρ1 = 1 given mB
i . Similarly, the curve corresponding to ρ1 = 1 given mA

i
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now corresponds to ρ1 = 0 given mB
i . It follows that R’s Max-Min best response to mB

i is

the same as her best response to mA
i . Note the following two other properties of R’s Max-

Min best response to mA
i and mB

i . First, it fully hedges R against ambiguity by equalizing

R’s expected payoff under all possible values of ρ1. Second, Assumption 2 implies that

the Max-Min best response lies strictly between the peaks a∗ne(ti, ci) and a∗ne(ci, ti+1).

We now discuss how a shift to the right in ci increases R’s best response to mA
i and mB

i .

As ci increases, both E
[
UR(a, ω) |ω ∈ (ti, ci)

]
and E

[
UR(a, ω) |ω ∈ [ci, ti+1]

]
shift to the

right so that their intersection a∗e (ti, ti+1, ci) naturally also shifts to the right. To see that S

can use Ellsbergian randomization to trigger a best response to mA
i and mB

i that is higher

than R’s standard best response a∗e (ti, ti+1) to the information that ω ∈ (ti, ti+1], simply

note the following. The action a∗e (ti, ti+1) is the one that maximizes the expected util-

ity function E
[
UR(a, ω) |ω ∈ (ti, ti+1)

]
while the Max-Min action a∗e (ti, ti+1, ti+1) is the

action at which E
[
UR(a, ω) |ω ∈ (ti, ti+1)

]
and E

[
UR(a, ω) |ω = ti+1

]
intersect, this ac-

tion being located to the right of the action at which E
[
UR(a, ω) |ω ∈ (ti, ti+1)

]
peaks, as

ensured by Assumption 2. The same argument shows that a∗e (ti, ti+1, ti) < a∗e (ti, ti+1). By

continuity of a∗e (ti, ti+1, ci) in ci, it follows that S can trigger any action between a∗e (ti, ti+1, ti)

and a∗e (ti, ti+1, ti+1) by adjusting ci.

Figures 1 and 2 exemplify the above. We assume a uniform distribution of the state

and UR(a, ω) = (ω − a)2. We set ti = 0, ti+1 = .75. In Figure 1, we set ci = .5.

Continuous curves correspond to E
[
UR(a, ω)

∣∣mA
i , ρ1 = 1

]
and E

[
UR(a, ω)

∣∣mA
i , ρ1 = 0

]
while remaining dashed curves correspond to interior values of ρ1. In Figure 2, we con-

sider two possible values of ci, respectively .375 and .6. Continuous curves correspond to

E
[
UR(a, ω)

∣∣mA
i , ρ1 = 1

]
and E

[
UR(a, ω)

∣∣mA
i , ρ1 = 0

]
for ci = .375. Dashed curves are



14

equivalents for the case of ci = .6.

Figures 1 and 2

We now characterize incentive conditions for S. The following Lemma shows that

equilibrium conditions have a similar form as in CS.

Lemma 4 An equilibrium featuring the Ellsbergian communication strategy
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
exists if and only if

US(a∗e (ti−1, ti, ci−1), ti) = US(a∗e (ti, ti+1, ci), ti), i = 1, ..., N − 1. (6)

Proof: ∀i ∈ {1, ..., N − 1} , mA
i and mB

i trigger an identical best response, so S is indif-

ferent between mA
i and mB

i for any ω ∈ (ti, ti+1]. We thus only need to consider devia-

tions across messages carrying different subscripts. Condition (6) ensures that ∀(ti, ti+1],

S weakly prefers any element of
{

mA
i , mB

i
}

to any other equilibrium message. �
Note that (6) is identical to the standard equilibrium condition (3), except R’s best

response is now a∗e (ti, ti+1, ci) instead of a∗ne(ti, ti+1).

As a preliminary comment to our main result appearing below, note that on the equi-

librium path of a partitional Ellsbergian equilibrium, the expected payoff of S and R is

independent of the actual composition of the urn. This is true for two reasons which

are both contained in Lemma 3. First, randomization conditional on θ involves messages

which trigger identical actions by R. Second, R’s expected payoff conditional on receiving

mA
i or mB

i is the same for any i = 1, ..., N. Hence, the Max-Min payoff of each agent at any

stage is equal to her expected payoff assuming for example that ρ1 = .5.
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Proposition 2 Given β and N ≥ 2, if the standard equilibrium E(β, N) exists and is non-

degenerate, there is an ε > 0 such that for any ε ≤ ε, there exists an Ellsbergian partitional

equilibrium Ẽ summarized by
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
such that:

a) ti = ti(β− ε, N), i = 1, ..., N − 1.

b) a∗e (ti, ti+1, ci) = a∗ne(ti, ti+1) + ε, i = 0, ..., N − 1.

c) S′s expected payoff in Ẽ is the same as the expected payoff that she obtains in the standard

equilibrium E (β− ε, N) if her bias is β− ε, which is strictly larger than her expected payoff in

the standard equilibrium E (β, N) .

d) R′s expected payoff in Ẽ is strictly larger than her expected payoff in the standard equilib-

rium E (β, N) .

Proof: See Appendix C.

If the standard equilibrium E (β, N) exists and is non-degenerate, there thus exists an

Ellsbergian equilibrium Ẽ that quasi-replicates the standard equilibrium E (β− ε, N) of a

game in which S is replaced by a sender with a lower bias β − ε. While Ẽ features the

same profile of thresholds {ti(β− ε, N)}N−1
i=1 as E (β− ε, N), R’s action for each interval is

shifted upwards given

a∗e (ti, ti+1, ci) = a∗ne(ti, ti+1) + ε, i = 0, ..., N − 1. (7)

Ẽ is thus not outcome-equivalent to E (β− ε, N). The two equilibria are however virtu-

ally payoff-equivalent for S in the sense that πS
(

β, Ẽ
)

is equal to the payoff obtained in

E (β− ε, N) by a sender with bias β− ε. Given Lemma 2, this expected payoff is further-

more larger than πS (β, E (β, N)) .

As to R, transiting from E(β, N) to Ẽ implies a trade-off. While Proposition 1 implies

that she prefers the new threshold profile conditional on best responding to intervals, her

response to intervals now shifts away from the optimal one (see (7)). An Envelope The-

orem argument ensures that the trade-off is resolved positively for ε low enough. Given

the first order conditions holding at a∗ne(ti(β− ε, N), ti+1(β− ε, N)), the cost of marginally

shifting a upwards at that point is 0. For ε small, R thus achieves a substantial gain at a

negligible cost by transiting from the standard equilibrium E(β, N) to the Ellsbergian

equilibrium Ẽ.
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The result for S parallels Theorem 2, part ii), in Chen and Gordon (2015) which says

that S prefers to face a receiver with more aligned interests. As a consequence of the use of

Ellsbergian randomization and her hedging objective, R shifts upwards her best response

to any given interval as compared to her expected utility best response, i.e. acts as if she

were more aligned. The result for R parallels Theorem 3, part ii), in Chen and Gordon

(2015) which says that R prefers to face the greatest equilibrium partition corresponding

to a different R with more aligned interests than herself. The difference of our result

is that in our setting, facing a more attractive partition comes at the cost of imperfectly

responding to the transmitted information from an ex ante point of view.

The following Corollary follows from the combined application of Proposition 1 and

Proposition 2. In what follows, we say that an equilibrium E strictly Pareto-dominates

another equilibrium Ẽ if E ensures both S and R a strictly higher expected payoff than Ẽ

Corollary 1 If there exists a non-degenerate and influential standard equilibrium, there exists an

Ellsbergian partitional equilibrium that strictly Pareto-dominates any standard equilibrium.

Proof: We know from Proposition 1 that absent Ellsbergian strategies, S and R’s strictly

preferred equilibrium is the finest standard equilibrium E
(

β, N(β)
)

(assuming without

loss of generality that it is non-degenerate). Proposition 2 shows that given β, there exists

an Ellsbergian equilibrium ensuring S and R a strictly higher expected payoff than that

obtained in E
(

β, N(β)
)

.�
We conclude our main analysis with a remark on the role of communication in our

setup. Sobel (2013) writes for the standard case: "In order for communication to be payoff-

relevant for R it must be both informative and influential." and "Relative to babbling, payoff-

relevant communication must increase R’s expected utility but may make S worse off.". We

now show that both of these properties break down once allowing for Ellsbergian strate-

gies. Equilibrium communication can be payoff-relevant without being either informa-

tive or influential and it can be payoff-relevant while making S better-off and R worse-off.

Let us call standard babbling equilibrium an equilibrium in which communication is non-

informative and S uses a standard communication strategy.

Proposition 3 There exists an equilibrium featuring non-informative, non-influential and payoff-

relevant communication ensuring S (resp. R) an ex ante payoff strictly larger (resp. smaller) than
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the payoff obtained in the standard babbling equilibrium.

Proof: By Lemma 3.b), there exists ε > 0 such that for any ε ≤ ε, one can find a c ∈ [0, 1]

yielding a∗e (0, 1, c) = a∗ne(0, 1) + ε. Also, given that β(ω) > 0 for any ω ∈ [0, 1] , there is a

δ > 0 such that ∀δ ≤ δ,∫ 1

0
US (a∗ne(0, 1) + δ, ω) f (ω)dω >

∫ 1

0
US (a∗ne(0, 1), ω) f (ω)dω.

As to R, note that she necessarily loses in ex ante terms whenever a∗e (0, 1, c) shifts away

from a∗ne(0, 1).�
The above equilibrium does not feature different messages that generate different

sets of posteriors. Communication is thus non-informative, implying that it is also non-

influential. Communication however generates a set of posteriors which is different from

R’s unique prior and which leads R to pick an action a∗e (0, 1, c) that is different from her

ex ante optimal action a∗ne(0, 1). R loses in the ex ante sense because a∗e (0, 1, c) is higher

than her ex ante optimal action. S conversely gains ex ante for the same reason as long as

a∗e (0, 1, c) is not excessively shifted to the right with respect to a∗ne(0, 1).

We call this equilibrium an Ellsbergian babbling equilibrium. Note that this equilib-

rium could be eliminated if we added an extra participation constraint for R stating that

she only listens to S if this increases her ex ante payoff3. The focus of our analysis is

indeed on equilibria that satisfy such a constraint as they Pareto-improve on standard

influential communication equilibria.

5 More results for the Uniform-Quadratic case

The following section considers the so-called Uniform-Quadratic setup. We focus on

two subclasses of Ellsbergian partitional equilibria that are both intuitive and analyti-

cally tractable. The first involves equally sized intervals and implements the optimal

decision rule of S conditional on an exogenous restriction on the number of equilibrium

actions. The second class involves a maximal use of Ellsbergian randomization. Our

3This would amount to assuming that the decision maker is sophisticated in the sense that she antici-

pates her future preference reversal. See Siniscalchi (2011).
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main findings are as follows. First, for sufficiently low bias, both classes typically con-

tain equilibria featuring more intervals than the finest standard equilibrium as well as

Pareto-dominating the latter. Second, payoff improvements achieved through Ellsber-

gian communication can be significant. Third, Ellsbergian communication can generate

the possibility of influential communication.

Assume ω is uniformly distributed on [0, 1] and

US(ω, a, b) = −(a− (ω+ b))2, UR(ω, a) = −(a−ω)2.

CS shows the following results. Given N ≥ 2, there is a maximal bias bne(N) =
1

2N(N−1) such that for any b ≤ bne(N), there exists a unique N-intervals standard equi-

librium. An influential standard equilibrium thus exists if and only if b ≤ 1
4 . Given b,

there is a maximal intervals number Nne(b) =
〈

1
2b

(
b+

√
b (b+ 2)

)〉
such that for any

N ≤ Nne(b), there exists a unique N-intervals standard equilibrium (where 〈x〉 denotes

the highest integer smaller than x).

For purely didactic purposes, we briefly rederive key aspects of our central result

(Proposition 2) in the Uniform-Quadratic setup. Note first that the best response charac-

terized in Lemma 3 reads

a∗e (ti, ti+1, ci) =
ti + ti+1 + ci

3
.

Proposition 2 states that for a given N ≥ 2, there is an ε such that for any ε < ε, a

sender with b < bne(N) can achieve the payoff πS(b − ε, E (b− ε, N)) by using an Ells-

bergian strategy. For ε > 0 small enough, the Ellsbergian strategy involved is given by{
{ti(b− ε, N)}N−1

i=1 , {ci}N−1
i=0

}
such that

ci =
ti(b− ε, N) + ti+1(b− ε, N)

2
+ 3ε, i = 0, ..., N − 1.

The expected payoff of S in the corresponding Ellsbergian equilibrium is

N−1

∑
0

∫ ti+1(b−ε,N)

ti(b−ε,N)

(
ti(b− ε, N) + ti+1(b− ε, N) + ci

3
− (ω+ b)

)2

dω

=
N−1

∑
0

∫ ti+1(b−ε,N)

ti(b−ε,N)

(
ti(b− ε, N) + ti+1(b− ε, N)

2
−ω− (b− ε)

)2

dω

= πS(b− ε, E(b− ε, N)) > πS(b, E(b, N)).
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Equal intervals equilibria Consider the following Ellsbergian communication strat-

egy. For each i = 1, ..., N, set ti =
i
N , and set ci ∈ (ti, ti+1] such that a∗e (ti, ti+1, ci) =

ti+ti+1
2 + b. The state space is thus cut up into N equally sized intervals and for each such

interval (ti, ti+1], R responds by picking the action ti+ti+1
2 + b that S would find optimal

conditional on the informational event ω ∈ (ti, ti+1]. The key argument for examining this

class of equilibria is that an equilibrium featuring this profile of strategies implements the

optimal decision rule of S conditional on N different actions being taken with positive

probability (we denote this rule D(b, N)). Conditional on S being restricted to using at

most N messages, such an N-partitions equal intervals equilibrium is thus the optimal equi-

librium among all possible cheap talk equilibria.

Proposition 4 a) For all b ≤ 1
12 there is a finite Ns(b) ≥ 2 such that there exists an equal

intervals equilibrium implementing D(b, N) if and only if N ∈ {2, ..., Ns(b)} . If b > 1
12 , there

exists no equal intervals equilibrium implementing D(b, N) for any N ≥ 2.

b) For all b ≤ 1
18 (so that Ns(b) ≥ 3), S and R obtain a strictly higher expected payoff in

an equal intervals equilibrium implementing D(b, N′) than in one implementing D(b, N), for

Ns(b) ≥ N′ > N ≥ 2.

c) For all b ≤ 1
30 , Ns(b) > Nne(b); For all b ∈

(
1

30 , 1
18

]
, Ns(b) = Nne(b); For all b ∈(

1
18 , 1

12

]
, Ns(b) < Nne(b).

d) For all b ≤ 1
18 , S obtains a strictly higher expected payoff in an equal intervals equilibrium

implementing D(b, N′) than in E(b, N) given Ns(b) ≥ N′ ≥ N ≥ 2. For all b ≤ 1
18 , R obtains a

strictly (weakly) higher expected payoff in an equal intervals equilibrium implementing D(b, N′)

than in E(b, N) given Ns(b) ≥ N′ ≥ N ≥ 3(2).

Proof: see Appendix D.

Points a) and b) are reminiscent of the CS characterization for the Uniform-Quadratic

case. Point a) states that there is a maximal b above which there exists no influential equal

intervals equilibrium. Point b) states that finer equal intervals equilibria Pareto-dominate

coarser ones. Point c) shows that for b sufficiently small, there exists an equal intervals

equilibrium featuring more intervals than the finest standard equilibrium. Point d) shows

that for b small enough, a given N-intervals standard equilibrium is Pareto-dominated by
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any equal intervals equilibrium featuring weakly more than N intervals. This is trivially

true for S. As to R, this reveals that the loss implied by her distorted best responses

in equal intervals equilibria is more than compensated by a more favorable profile of

intervals.

Maximal ambiguity equilibria We now analyze a subclass of Ellsbergian equilibria

featuring what may be described as a maximal use of simple Ellsbergian randomization

(we term these maximal ambiguity equilibria). Given {ti}N−1
i=1 , the involved communication

strategy is constructed by setting ci = ti+1 for any i = 1, ..., N. We here compare the set of

maximal ambiguity equilibria with the sets of standard and equal intervals equilibria.

Proposition 5 a) For all b ≤ 1
3 , there is a finite Nm(b) ≥ 2 such that there exists an N-intervals

maximal ambiguity equilibrium if and only if N ∈ {2, ..., Nm(b)}. For any given N, there exists

at most one N-intervals maximal ambiguity equilibrium. If b > 1
3 , there exists no N-intervals

maximal ambiguity equilibrium for any N ≥ 2.

b) For all b ≤ 1
4 , Nm(b) ≥ Nne(b). For all b ∈

(
1
4 , 1

3

]
, Nm(b) = 2 > Nne(b) = 1; For all

b ≤ 1
12 , Nm(b) ≥ Ns(b) + 1.

c) For all b ≤ 1
12 , S and R obtain a strictly higher expected payoff in the maximum ambiguity

equilibrium featuring Ns(b) + 1 intervals than in an equal intervals equilibrium implementing

D(b, N), for N ∈ {2, ..., Ns(b)} .

Proof: See Appendix E.

Point a) states that there is a maximal b above which there exists no influental maximal

ambiguity equilibrium. Point b) implies together with Point c) of Proposition 3 that for

b ≤ 1
18 , the finest maximal ambiguity equilibrium is finer than the finest standard equi-

librium as well as the finest equal intervals equilibrium. Point c) implies that if b ≤ 1
18 ,

there exists a maximal ambiguity equilibrium that Pareto-dominates any any standard

equilibrium as well as any equal intervals equilibrium.

Though influential maximal ambiguity equilibria exist for b ≤ 1
3 and influential stan-

dard equilibria for b ≤ 1
4 , we do not have an analytical comparison of maximal ambiguity

equilibria with standard equilibria for b ∈
(

1
18 , 1

4

]
. Figure 3 and 4 complement our ana-

lytical results with a numerical analysis. We find that for b ∈
(

1
18 , 1

4

]
, S and R obtain a
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strictly higher expected payoff in the finest maximal ambiguity equilibrium than in the

finest standard equilibrium, just as for b ≤ 1
18 .

The continuous curve in Figure 3 shows, for every b, S’s expected payoff in the finest

maximal ambiguity equilibrium. The dashed curve gives S’s payoff in the finest stan-

dard equilibrium. The continuous and dashed curves in Figure 4 are the equivalents for

R’s expected payoff. The dotted curve in Figures 3 and 4 shows the payoff achieved by

respectively S and R in the Pareto-optimal mediation protocol (Goltsman et al. (2009)),

which is also the payoff achieved in the optimal noisy equilibrium in Board, Blume and

Kawamura (2007). Note that the payoff improvement achieved by S and R through maxi-

mal ambiguity equilibria is significant. For all (all but very high) bs, S (R) prefers the best

maximal ambiguity equilibrium to the best mediated communication equilibrium4.

Figures 3 and 4

Overcoming babbling We here show that maximal ambiguity equilibria can help

overcome the standard babbling equilibrium E(b, 1) in a way that is beneficial to both

parties.

Proposition 6 Let b ∈ (1
4 , 1

3 ] so that only the standard babbling equilibrium E(b, 1) exists absent

Ellsbergian strategies. There exists a (unique) 2-intervals maximal ambiguity equilibrium (call it

Ẽ(b, 2)). Also:
4Mediated communication assumes the existence of a third party, the mediator. S communicates with

the mediator who then communicates with R. The mediator can commit to a communication rule and

Goltsman et al. (2009) identify the Pareto-dominant rule.
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1.For any b ∈
(

1
4 , 1

3

]
, S′s expected payoff in Ẽ(b, 2) is strictly larger than her expected payoff

in the standard babbling equilibrium E (b, 1) .

2.For any b < 1
12(1+

√
6) ' 0.28, R′s expected payoff in Ẽ(b, 2) is strictly larger than her

expected payoff in the standard babbling equilibrium E (b, 1) .

Proof: See Appendix F.

6 Robustness

In what follows, we discuss the robustness of our results with respect to key restrictive

assumptions of our analysis.

Endogenous choice of the urn Our game does not feature a stage at which S privately

chooses an urn among a set of urns, each urn being characterized by the interval [ε, ε] of

values of ρ1 considered possible by R. One could study a more general setup in which

a continuum of such urns is present, one for each closed subset of [0, 1]. The equilibria

identified in our setup would survive. If a given strategy profile is an Ellsbergian par-

titional equilibrium of our simple setup, there would exist an equilibrium in the richer

setup in which S picks the [0, 1] urn and the strategy profile of S and R is otherwise the

same. S has no incentive to deviate from picking the [0, 1] urn because conditional on θ

she randomizes between messages that yield the same expected utility.

Maximally ambiguous urn To what extent can S still use Ellsbergian randomiza-

tion to shift R’s response to information upwards if the unique urn available to S is

characterized by ρ1 ∈ [ε, ε] with ε, ε > 0? Assuming that S uses the Ellsbergian strat-

egy
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
, one possible approach is to identify the conditions on ε, ε such

that R’s best response to mA
i and mB

i is still given by a∗e (ti, ti+1, ci) as defined above.

Note first that given
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
and mJ

i , for J ∈ {A, B} , there is a unique prior

ρJ
1 (ti, ti+1, ci) ∈ (0, 1) such that the expected utility curve E

[
UR(a, ω)

∣∣ ρJ
1(.), mJ

i

]
peaks

at a∗e (ti, ti+1, ci). Given ε, ε, it is easily seen that the Max-Min best response of R to mJ
i is

a∗e (ti, ti+1, ci) if and only if ε ≤ ρJ
1 (ti, ti+1, ci) ≤ ε. Furthermore, it is trivially true that

ρA
1 (.) = 1− ρB

1 (.) . Given
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
and ε, ε, R’s best response to mA

i and mB
i
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will thus be a∗e (ti, ti+1, ci) if and only if ε ≤ min
{

ρA
1 , 1− ρA

1
}

and max
{

ρA
1 , 1− ρA

1
}
≤ ε.

In the Uniform-Quadratic setup, setting ci = (1− α)ti + αti+1 for each i, one obtains the

simple expression

ρA
1 (ti, ti+1, ci) =

α2 − 1
2(α− 1)α− 1

.

The above function equals 1
2 for α = 1

2 and 0 for α = 1 and it is monotonically de-

creasing in α. Suppose that we simply wish to ensure that given
(
{ti}N−1

i=1 , {ci}N−1
i=0

)
and

ε, ε, R’s best response to mA
i and mB

i is a∗e (ti, ti+1, ci) = a∗ne(ti, ti+1) + δ, for δ positive

and arbitrarily small. It follows from the above derivations that this can be achieved

by setting ci = (1 − α)ti + αti+1 with α arbitrarily close to 1
2 if ε ≤ α2−1

−1+2(α−1)α and

ε ≥ 1 −
(

α2−1
−1+2(α−1)α

)
. The noteworthy aspect is that the bounds on ε and ε converge

to 1
2 for α converging to 1

2 , meaning that one only needs a minimally ambiguous urn

to trigger a minimal upwards shift in R’s best response. If on the other hand one sets

ci =
1
3 ti +

2
3 ti+1 for all i, our derivations imply that R’s best response to mA

i and mB
i is

a∗e (ti, ti+1, ci) under the condition that ε ≤ 1
3 and ε ≥ 2

3 .

The above discussion yields further insights. First, it shows that we do not need a

symmetric set of priors to ensure that R’s best response to mA
i and mB

i is identical. Second,

a maximally ambiguous urn is not required for R to achieve full hedging through her

best response to mA
i and mB

i . This is still achieved as long as R’s best response remains

a∗e (ti, ti+1, ci). Third, derivations reveal that bounds on ρ1 simply limit the range of values

of ci on (ti, ti+1] for which the best response a∗e (ti, ti+1, ci) can be achieved. A last aspect

is that we assume that S knows the set of priors of R precisely. This assumption is not

strictly necessary. What is essential is that whichever set of priors [ε, ε] is used by R among

those that S considers possible, the set implies the same behavior by R in response to

equilibrium messages.

Strategy of R We consider a very specific decision algorithm in terms of both the belief

formation rule (Prior by Prior Bayesian updating) and the decision making rule (Max-

Min). Our equilibria are not robust to the use of a dynamically consistent updating rule.

On the other hand, conditional on Prior by Prior Bayesian updating we would expect

our main result to survive under alternative decision rules such as the α-Max-Min or

the smooth ambiguity model. The key is that a shift in R’s best response away from
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the standard best response would still be achievable through Ellsbergian randomization.

Under the smooth ambiguity model, R’s best response would presumably not entirely

hedge her against ambiguity5, implying that the welfare improvement result for R would

have to be qualified when considering interim payoffs.

Strategy of S One could consider more complex forms of Ellsbergian randomization

for example involving more than two messages on each standard interval. While we

cannot exclude that this may allow to enlarge the set of implementable outcomes, two

caveats are worth noting. First, it considerably simplifies the analysis to focus on strate-

gies that imply randomization only across messages that trigger the same best response

by R. Second, Ellsbergian randomization will not allow to generate a perfectly revealing

equilibrium. Indeed, it only allows to shift R’s response to information when applied to

non-degenerate standard intervals of the state space.

7 Conclusion

This paper rationalizes ambiguous language by showing that under fairly general cir-

cumstances, a sender and an ambiguity averse receiver can both benefit from the use of

ambiguous communication strategies. On the theoretical side, it remains to be explored

how our insights generalize to other signaling games (costly signaling, verifiable infor-

mation). On the empirical side, experimental work could help evaluate whether receivers

respond to ambiguous messages as predicted by our model.

8 Appendix A

8.1 Proof of Lemma 1

The proof is constructive. Define

US(a, ω, b) =
{G(a−ω−

[
β(ω) + (b− 1)

(
β′(ω)− β(ω)

)]
) if b ≥ 1

G
(

a−ω−
(

β(ω)b
β′(ω)−β(ω)

β(ω)

))
if b ≤ 1.

5This is a feature of any second-order model of ambiguity. See Lang (2015).
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This function clearly satisfies a), b) and c). As to d), note that US
1 (a, ω, b) = G′(.) and that

US
13(a, ω, b) =

{−G′′(a−ω−
[
β(ω) + (b− 1)

(
β′(ω)− β(ω)

)]
)
[
β′(ω)− β(ω)

]
if b ≥ 1

−G′′
(

a−ω−
(

β(ω)b
β′(ω)−β(ω)

β(ω)

)) (
β′(ω)− β(ω)

)
b

β′(ω)−β(ω)
β(ω) if b ≤ 1.

Given that G′′ is negative everywhere and that β′(ω)− β(ω) > 0, it follows that US
13 > 0

everywhere. Note also that US
1 (a, ω, b) is indeed continuously differentiable in b given

that lim
b→1−

US
13(a, ω, b) = lim

b→1+
US

13(a, ω, b) = 1.�

8.2 Proof of Lemma 2

In what follows, we abuse notation and denote the utility function of S by US(a, ω, β),

thus explicitly referring to the bias function β. Note that β is not a scalar parameter as in

the original CS setup. We have:

πS (β, E(β, N)) =
N−1

∑
i=0

∫ ti+1(β,N)

ti(β,N)
US(a∗ne(ti(β, N), ti+1(β, N)), ω, β) f (ω) dω.

Let us define

dπS (β, E(β, N))
dβ

= lim
ε→0

πS (β+ ε, E(β+ ε, N))− πS (β, E(β, N))
ε

.
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This corresponds to the marginal effect on the payoff of S of a change in her bias function

from β(ω) to β′(ω) = β(ω) + ε, for any ω. So let us examine:

dπS (β, E(β, N))
dβ

=
N−1

∑
i=0

d
(∫ ti+1(β,N)

ti(β,N) US(a∗ne(ti(β, N), ti+1(β, N)), ω, β) f (ω) dω
)

dβ

=
N−1

∑
i=0


∫ ti+1(β,N)

ti(β,N)
dUS(a∗ne(ti(β,N),ti+1(β,N)),ω,β)

dβ f (ω) dω

+US(a∗ne(ti(β, N), ti+1(β, N)), ti+1(β, N), β) f (ti+1(β, N)) ∂ti+1(β,N)
∂β

−US(a∗ne(ti(β, N), ti+1(β, N)), ti(β, N), β) f (ti(β, N)) ∂ti(β,N)
∂β


=

N−1

∑
i=0

∫ ti+1(β,N)

ti(β,N)

dUS(a∗ne(ti(β, N), ti+1(β, N)), ω, β)

dβ
f (ω) dω

+
N−1

∑
i=1

([
−US(a∗ne(ti(β, N), ti+1(β, N)), ti(β, N), β)

+US(a∗ne(ti−1(β, N), ti(β, N)), ti(β, N), β)

]
f (ti(β, N))

∂ti(β, N)
∂β

)

+US(a∗ne(t0(β, N), t1(β, N)), t0(β, N), β) f (t0(β, N))
∂t0(β, N)

∂β

−US(a∗ne(tN−1(β, N), tN(β, N)), tN(β, N), β) f (tN(β, N))
∂tN(β, N)

∂β
.

Note first that the second line of the above expression is equal to 0 given that for every

i ∈ {1, ..., N − 1} ,

US(a∗ne(ti−1(β, N), ti(β, N)), ti(β, N), β)−US(a∗ne(ti(β, N), ti+1(β, N)), ti(β, N), β) = 0.

Note furthermore that by definition ∂t0(β,N)
∂β = ∂tN(β,N)

∂β = 0, given that t0(β, N) = 0 and

tN(β, N) = 1. We now show that for every i ∈ {0, ..., N − 1} ,

∫ ti+1(β,N)

ti(β,N)

dUS(a∗ne(ti(β, N), ti+1(β, N)), ω, β)

dβ
f (ω) dω < 0.



27

Note that for every i ∈ {0, ..., N − 1} ,

∫ ti+1(β,N)

ti(β,N)

dUS(a∗ne(ti(β, N), ti+1(β, N)), ω, β)

dβ
f (ω) dω

=
∫ ti+1(β,N)

ti(β,N)

∂US(a∗ne(ti(β, N), ti+1(β, N)), ω, β)

∂β
f (ω) dω+

∫ ti+1(β,N)

ti(β,N)

∂US(a∗ne(ti(β, N), ti+1(β, N)), ω, β)

∂a
f (ω) dω

 ∂a∗ne(ti(β,N),ti+1(β,N))
∂ti

∂ti(β,N)
∂β +

∂a∗ne(ti(β,N),ti+1(β,N))
∂ti+1

∂ti+1(β,N)
∂β

 .

Note first that

∂US(a∗ne(ti(β, N), ti+1(β, N)), ω, β)

∂β
= −∂US(a∗ne(ti(β, N), ti+1(β, N)), ω, β)

∂a
.

The above is true because we have assumed that US(a, ω, β(ω)) = G(a− ω + β(ω)) for

some concave and single peaked function G. Note now that

∫ ti+1(β,N)

ti(β,N)

∂US(a∗ne(ti(β, N), ti+1(β, N)), ω, β)

∂a
f (ω) dω > 0. (8)

To see this, note first that a∗ne(ti(β, N), ti+1(β, N)) by definition satisfies:∫ ti+1(β,N)

ti(β,N)

∂UR(a∗ne(ti(β, N), ti+1(β, N)), ω, β)

∂a
f (ω) dω = 0. (9)

Second, note that we have assumed that US(a, ω, 0) = UR(a, ω) and US
13 > 0. It follows

that (9) implies (8). Intuitively, R’s favorite action conditional on ω ∈ (ti(β, N), ti+1(β, N)]

is smaller than S’s favoured action, thus implying that the derivative of S’s expected pay-

off function with respect to a at the chosen a∗ne must be > 0. Finally, note that

∂ti(β, N)
∂β

< 0, for i = 1, ...., N − 1,

∂a∗ne(ti, ti+1)

∂ti
> 0,

∂a∗ne(ti, ti+1)

∂ti+1
> 0.

The two inequalities stated in the first line follow from Lemma 4 in CS. The two in-

equalities stated in the second line are proved in Claim 2 below �
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9 Appendix B

9.1 Three claims

We first state three claims that hold independently of Assumption 2.

Claim 1 Concavity and single peakedness

E
[
UR(a, ω) |ω ∈ [ω, ω]

]
is a concave and single peaked function with a unique maximizer

a∗ne(ω, ω).

Proof: This follows trivially from the fact that G is concave and single peaked. �

Claim 2 Shift in maximum

For any ω, ω, ∆1, ∆2 such that ∆1 ≥ 0 and ∆2 ≥ 0 (with strict inequality for at least one of

the two), 0 ≤ ω < ω ≤ 1 and 0 ≤ ω + ∆1 < ω + ∆2 ≤ 1, it holds true that a∗ne(ω, ω) <

a∗ne(ω+ ∆1, ω+ ∆2).

Proof: We prove the statement for ∆1 = 0 and ∆2 > 0. The proof for remaining cases

is similar. By the FOC defining a∗ne, it is true that∫ ω

ω
UR

1 (a
∗
ne(ω, ω), ω) f (ω) dω = 0 (10)

Now, given the concavity of
∫ ω+∆2

ω UR(a, ω) f (ω) dω, we simply need to prove that∫ ω+∆2

ω
UR

1 (a
∗
ne(ω, ω), ω) f (ω) dω > 0.

Note that ∫ ω+∆2

ω
UR

1 (a
∗
ne(ω, ω), ω) f (ω) dω

=
∫ ω

ω
UR

1 (a
∗
ne(ω, ω), ω) f (ω) dω+

∫ ω+∆2

ω
UR

1 (a
∗
ne(ω, ω), ω) f (ω) dω > 0. (11)

The first integral in (11) is equal to 0, so we simply need to prove that the second integral

is strictly positive. Now, given the assumption that UR
12 > 0, note that (10) trivially implies

that UR
1 (a
∗
ne(ω, ω), ω) > 0 for any ω ≥ ω (with strict inequality for ω > ω), which in turn

implies that
∫ ω+∆2

ω UR
1 (a
∗
ne(ω, ω), ω) f (ω) dω > 0.�
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Claim 3 Single crossing condition

1. Let ω, ω, ∆1, ∆2 be such that ∆1 ≥ 0 and ∆2 ≥ 0 (with strict inequality for at least

one of the two), 0 ≤ ω < ω ≤ 1 and 0 ≤ ω + ∆1 < ω + ∆2 ≤ 1. If a∗ is such that

E
[
UR(a∗, ω) |ω ∈ [ω+ ∆1, ω+ ∆2]

]
= E

[
UR(a∗, ω) |ω ∈ [ω, ω]

]
, then for any a > a∗,

E
[
UR(a, ω) |ω ∈ [ω+ ∆1, ω+ ∆2]

]
> E

[
UR(a, ω) |ω ∈ [ω, ω]

]
.

2. Let ω+ ∆1 ∈ (ω, ω]. There is an a∗ ∈ (a∗ne(ω, ω+ ∆1), a∗ne(ω+ ∆1, ω)) such that

E
[
UR(a, ω) |ω ∈ [ω+ ∆1, ω]

]
> E

[
UR(a, ω) |ω ∈ (ω, ω+ ∆1)

]
if a > a∗ while the inequality is reversed for a < a∗ and replaced by equality if a = a∗.

Proof: Point 1 follows since, given U12 > 0, it holds true that

∂E
[
UR(a, ω) |ω ∈ [ω+ ∆1, ω+ ∆2]

]
∂a

>
∂E
[
UR(a, ω) |ω ∈ [ω, ω]

]
∂a

, ∀a > a∗.

To see that Point 2 holds, note the following. We know by Assumption 2 that

E
[
UR(a∗ne(ω, ω+ ∆1), ω) |ω ∈ (ω, ω+ ∆1)

]
> E

[
UR(a∗ne(ω, ω+ ∆1), ω) |ω ∈ [ω+ ∆1, ω]

]
and

E
[
UR(a∗ne(ω+ ∆1, ω), ω) |ω ∈ [ω+ ∆1, ω]

]
> E

[
UR(a∗ne(ω+ ∆1, ω), ω) |ω ∈ (ω, ω+ ∆1)

]
.

Furthermore, E
[
UR(a, ω) |ω ∈ (ω, ω+ ∆1)

]
and E

[
UR(a, ω) |ω ∈ [ω+ ∆1, ω]

]
are both

continuous functions of a. It follows that they must cross on the interval

(a∗ne(ω, ω+ ∆1), a∗ne(ω+ ∆1, ω)) .

�

9.2 Proof of Lemma 3

Step 1 We show in this step that it is without loss of generality to assume that the Max-

Min action of R is a pure action. Consider a mixed action ã of R given by a distribution

g̃ over [0, 1]. Denote by a (ã) the pure action satisfying a (ã) =
∫ 1

0 ag̃(a)da. Recall that the
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payoff function UR is concave. It follows by Jensen’s inequality that the expected payoff

of ã is weakly smaller than that of a (ã) for any distribution F̂ of the state ω, i.e.∫ 1

0

(∫ 1

0
UR(a, ω)g̃(a)da

)
f̂ (ω)dω ≤

∫ 1

0
UR(a (ã) , ω) f̂ (ω)dω.

R is a max-min decision maker, i.e. chooses the (possibly mixed action) a∗ (given by the

distribution g∗) that maximizes

min
f

∫ 1

0

(∫ 1

0
UR(a, ω)g∗(a)da

)
f̂ (ω)dω.

Suppose the optimal Max-Min action assigns positive probability to multiple pure ac-

tions, i.e. that g∗ is not degenerate. We know that the pure action a (a∗) =
∫ 1

0 ag∗(a)da

does weakly better for any distribution f̂ of the state. It follows that two cases are possi-

ble. Either a∗ and a (a∗) are both solutions to the Max-Min problem or a (a∗) is while a∗ is

not. Consequently, we may without loss of generality focus on pure actions in searching

for the Max-Min solution.

Step 2 This proves Point a). Assume that R has received message mA
i . Let E

[
UR(a, ω)

∣∣mA
i , ρ1

]
denote the expected utility of action a conditional on receiving message mA

i , assuming

that S uses the communication strategy
(
{tr}N−1

r=1 , {cr}N−1
r=0

)
. We first note that for any

ρ1 ∈ (0, 1) ,

min{E
[
UR(a, ω)|mA

i , 1
]

, E
[
UR(a, ω)|mA

i , 0
]
}

≤ E
[
UR(a, ω)|mA

i , ρ1

]
≤ max{E

[
UR(a, ω)|mA

i , 1
]

, E
[
UR(a, ω)|mA

i , 0
]
}.

It follows that for any given a, the set of values of ρ1 yielding the minimum expected

payoff contains either ρ1 = 0 or ρ1 = 1. In searching for the Max-Min action of R, we may

thus without loss of generality assume that either ρ1 = 0 or ρ1 = 1. If ρ1 = 0, mA
i implies

that ω ∈ [ci, ti+1]. If instead ρ1 = 1, mA
i implies that ω ∈ (ti, ci) .

In searching for the Max-Min best response of R, we thus only need to consider the

lower envelope of{
E
[
UR(a, ω) |ω ∈ (ti, ci)

]
, E
[
UR(a, ω) |ω ∈ [ci, ti+1]

]}
.
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Let a∗ be the unique value of a for which

E
[
UR(a, ω) |ω ∈ (ti, ci)

]
= E

[
UR(a, ω) |ω ∈ [ci, ti+1]

]
.

By Claims 1-3, the lower envelope is given by E
[
UR(a, ω) |ω ∈ [ci, ti+1]

]
for a ≤ a∗and

by E
[
UR(a, ω) |ω ∈ (ti, ci)

]
for a > a∗. The lower envelope is strictly increasing in a for

a < a∗ and strictly decreasing in a for a > a∗. It thus has a unique maximum at a∗.

Assume instead that R has received mB
i . If ρ1 = 1, mB

i implies that ω ∈ [ci, ti+1]. If

instead ρ1 = 0, mB
i implies that ω ∈ (ti, ci) . By the same argument as above, it follows

that R’s Max-Min action is given by a∗ as defined above.

Step 3 This proves the first part of Point b), i.e. that a∗e (ti, ti+1, ci) is a continuous and

strictly increasing function of ci. We simply state and prove the following statement:

Let 0 ≤ ω < ω ≤ 1. Let a∗(c) be the unique value a such that

E
[
UR(a∗(c), ω) |ω ∈ (ω, c)

]
= E

[
UR(a∗(c), ω) |ω ∈ [c, ω]

]
. (12)

It holds true that a∗(c) is continuous and strictly increasing in c on [ω, ω].

Let ω ≤ c < c′ ≤ ω. Consider the three functions given by E
[
UR(a, ω) |ω ∈ [(ω, c)

]
,

E
[
UR(a, ω) |ω ∈ [c, c′)

]
and E

[
UR(a, ω) |ω ∈ [c′, ω]

]
. We know that a∗ne(ω, c) < a∗ne(c, c′) <

a∗ne(c′, ω). Furthermore, by Claim 3 the unique crossing point a1 of

E
[
UR(a, ω) |ω ∈ (ω, c)

]
and E

[
UR(a, ω)ω ∈ [c, c′)

]
belongs to (a∗ne(ω, c), a∗ne(c, c′)). Similarly, by Claim 3 the unique crossing point a3 of

E
[
UR(a, ω)

∣∣ω ∈ [c, c′)
]

and E
[
UR(a, ω)

∣∣ω ∈ [c′, ω]
]

belongs to (a∗ne(c, c′), a∗ne(c′, ω)) . It also follows that the unique crossing point a2 of

E
[
UR(a, ω) |ω ∈ (ω, c)

]
and E

[
UR(a, ω)

∣∣ω ∈ [c′, ω]
]

belongs to (a1, a3) . We thus have a1 < a2 < a3.

Now, let us first compare E
[
UR(a, ω) |ω ∈ (ω, c)

]
and E

[
UR(a, ω) |ω ∈ [c, ω]

]
and

show that they have a unique crossing point at some a∗ ∈ [a1, a2). Note that for every a,

there is some α ∈ (0, 1) such that

E
[
UR(a, ω) |ω ∈ [c, ω]

]
= αE

[
UR(a, ω)

∣∣ω ∈ [c, c′)
]
+ (1− α)E

[
UR(a, ω)

∣∣ω ∈ [c′, ω]
]

.
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We know that for any a < a1,

max
{

E
[
UR(a, ω)

∣∣ω ∈ [c, c′)
]

, E
[
UR(a, ω)

∣∣ω ∈ [c′, ω]
]}
< E

[
UR(a, ω) |ω ∈ (ω, c)

]
.

It follows that for a < a1, E
[
UR(a, ω) |ω ∈ (ω, c)

]
> E

[
UR(a, ω) |ω ∈ [c, ω]

]
. We also

know that for any a ≥ a2,

E
[
UR(a, ω)

∣∣ω ∈ [c, c′)
]
> E

[
UR(a, ω) |ω ∈ (ω, c)

]
and E

[
UR(a, ω)

∣∣ω ∈ [c′, ω]
]
≥ E

[
UR(a, ω) |ω ∈ ω, c

]
.

It follows that for a ≥ a2, E
[
UR(a, ω) |ω ∈ (ω, c)

]
< E

[
UR(a, ω) |ω ∈ [c, ω]

]
. We may

conclude that E
[
UR(a, ω) |ω ∈ (ω, c)

]
and E

[
UR(a, ω) |ω ∈ [c, ω]

]
cross somewhere on

[a1, a2).

Let us now compare E
[
UR(a, ω) |ω ∈ (ω, c′)

]
and E

[
UR(a, ω) |ω ∈ [c′, ω]

]
and show

that they have a unique crossing point at some a∗ ∈ (a2, a3]. Note that for every a, there is

some α̃ ∈ (0, 1) such that

E
[
UR(a, ω)

∣∣ω ∈ (ω, c′
)]
= α̃E

[
UR(a, ω) |ω ∈ (ω, c)

]
+(1− α̃)E

[
UR(a, ω)

∣∣ω ∈ [c, c′)
]

.

We know that for any a ≤ a2,

E
[
UR(a, ω) |ω ∈ (ω, c)

]
≥ E

[
UR(a, ω)

∣∣ω ∈ [c′, ω]
]

and E
[
UR(a, ω)

∣∣ω ∈ [c, c′)
]
> E

[
UR(a, ω)

∣∣ω ∈ [c′, ω]
]

.

It follows that for a ≤ a2, E
[
UR(a, ω) |ω ∈ [ω, c′)

]
> E

[
UR(a, ω) |ω ∈ [c′, ω]

]
. We also

know that for any a > a3,

max
{

E
[
UR(a, ω) |ω ∈ [ω, c)

]
, E
[
UR(a, ω)

∣∣ω ∈ [c, c′)
]}
< E

[
UR(a, ω)

∣∣ω ∈ [c′, ω]
]

.

It follows that for a > a3, E
[
UR(a, ω) |ω ∈ [ω, c′)

]
< E

[
UR(a, ω) |ω ∈ [c′, ω]

]
. We may

conclude that E
[
UR(a, ω) |ω ∈ [ω, c′)

]
and E

[
UR(a, ω) |ω ∈ [c′, ω]

]
cross somewhere on

(a2, a3].

Having now proved that E
[
UR(a, ω) |ω ∈ [ω, c)

]
and E

[
UR(a, ω) |ω ∈ [c, ω]

]
cross

somewhere on [a1, a2) while E
[
UR(a, ω) |ω ∈ [ω, c′)

]
and E

[
UR(a, ω) |ω ∈ [c′, ω]

]
cross



33

somewhere on (a2, a3], it follows that a∗(c) < a∗(c′). The continuity of a∗(c) in c follows

from the continuity of E
[
UR(a, ω) |ω ∈ [ω, c)

]
and E

[
UR(a, ω) |ω ∈ [c, ω]

]
in c.

Step 4 This proves the double inequality contained in Point b). Finally, to see that

a∗ne(ti, ti+1) < a∗e (ti, ti+1, ti+1), note that it follows immediately from Claims 1-3 that the

value of a ensuring equality of E
[
UR(a, ω) |ω ∈ (ω, ω]

]
and E

[
UR(a, ω) |ω = ω

]
is strictly

larger than a∗ne(ω, ω). If similarly follows that the value of a ensuring equality of E
[
UR(a, ω) |ω = ω

]
and E

[
UR(a, ω) |ω ∈ (ω, ω]

]
is strictly smaller than a∗ne(ω, ω).�

10 Appendix C

We here prove Proposition 2.

Step 1 This step proves Point a). In what follows, as in Appendix A, we abuse notation

and denote the utility function of S by US(a, ω, β), thus explicitly referring to the bias

function β. Note that β is not a scalar parameter as in the original CS setup.

Assume that β, N such that E (β, N) exists and is non-degenerate, i.e. 0 < t1(β, N) <

... < tN−1(β, N) < 1. First, Lemma 3 (Part b)) implies that for any given β, N such that

0 < t1(β, N) < ... < tN−1(β, N) < 1, there is some maximal δ(β, N) > 0 such that for any

δ ≤ δ(β, N), one can pick a profile {ci}N−1
i=0 satisfying ci ∈ (ti(β, N), ti+1(β, N)] such that

for every i ∈ {0, ..., N − 1}:

a∗e (ti(β, N), ti+1(β, N), ci) = a∗ne(ti(β, N), ti+1(β, N)) + δ.

Note that

δ(β, N) = min
i=0,...,N−1

a∗e (ti(β, N), ti+1(β, N), ti+1(β, N))− a∗ne(ti(β, N), ti+1(β, N)).

Second, note that if β, N is such that 0 < t1(β, N) < ... < tN−1(β, N) < 1, then there is

some ε(β, N) > 0 such that for any ε ≤ ε(β, N), it holds true that 0 < t1(β− ε, N) < ... <

tN−1(β− ε, N) < 1. It follows by Lemma 3 (Part b)) that for any ε ≤ ε(β, N), δ(β− ε, N) >

0. Finally, note that for any ε ≤ ε(β, N), δ(β− ε, N) is continuous in ε. To see this, recall

that

δ(β− ε, N) = min
i=0,...,N−1

a∗e (ti(β− ε, N), ti+1(β− ε, N), ti+1(β− ε, N))− a∗ne(ti(β− ε, N), ti+1(β− ε, N))
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and simply note that a∗e (ti(β− ε, N), ti+1(β− ε, N), ti+1(β− ε, N)) and a∗ne(ti(β− ε, N), ti+1(β−
ε, N)) are continuous in ε for the following reasons. First, E

[
UR(a, ω) |ω ∈ [ti, ti+1)

]
is

continuous in ti and ti+1 while E
[
UR(a, ω) |ω = ti+1

]
is in continuous ti+1. Second,

ti(β− ε, N) and ti+1(β− ε, N) are continuous in ε.

We may conclude that there exists an ε(β, N) ∈ (0, ε(β, N)] such that for any ε ≤
ε(β, N), it holds true that δ(β − ε, N) ≥ ε. For any ε ∈ (0, ε(β, N)], there thus exists

some profile {ci}N−1
i=0 satisfying ci ∈ (ti(β− ε, N), ti+1(β− ε, N)] such that for every i ∈

{0, ..., N − 1}:

a∗e (ti(β− ε, N), ti+1(β− ε, N), ci) = a∗ne(ti(β− ε, N), ti+1(β− ε, N)) + ε.

For any ε ∈ (0, ε(β, N)] and such a profile {ci}N−1
i=0 , note that for every i ∈ {0, ..., N − 1}

and ω :

US (a∗e (ti(β− ε, N), ti+1(β− ε, N), ci), ω, β)

= US (a∗ne(ti(β− ε, N), ti+1(β− ε, N)), ω, β− ε) .

For any ε ∈ (0, ε(β, N)], given that for every i ∈ {1, ..., N − 1}

US (a∗ne(ti−1(β− ε, N), ti(β− ε, N)), ti(β− ε, N), β− ε)

= US (a∗ne(ti(β− ε, N), ti+1(β− ε, N)), ti(β− ε, N), β− ε) ,

as implied by the existence of the standard equilibrium E(β− ε, N) for a sender bias given

by β− ε, it thus follows that for every i ∈ {1, ..., N − 1} ,

US (a∗e (ti−1(β− ε, N), ti(β− ε, N), ci−1,i), ti(β− ε, N), β)

= US (a∗e (ti(β− ε, N), ti+1(β− ε, N), ci), ti(β− ε, N), β) ,

which implies that the equilibrium Ẽ exists.

Step 2 This proves Point b). The expected payoff of S in Ẽ is given by:

N−1

∑
i=0

∫ ti+1(β−ε,N)

ti(β−ε,N)
US (a∗e (ti(β− ε, N), ti+1(β− ε, N), ci), ω, β) f (ω)dω

Recall that in Ẽ, the profile {ci}N−1
i=0 is picked such that for every i ∈ {0, ..., N − 1} ,

a∗e (ti(β− ε, N), ti+1(β− ε, N), ci) = a∗ne(ti(β− ε, N), ti+1(β− ε, N)) + ε.
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Combining the above with the fact that US (a+ ε, ω, β) = US (a, ω, β− ε), the expected

payoff of S in Ẽ can thus be rewritten as

N−1

∑
i=0

∫ ti+1(β−ε,N)

ti(β−ε,N)
US (a∗ne(ti(β− ε, N), ti+1(β− ε, N)), ω, β− ε) f (ω)dω.

The above expression is equal to πS (β− ε, E (β− ε, N)) by definition of the standard

equilibrium E (β− ε, N) . Finally, we know by Lemma 2 that

πS (β− ε, E (β− ε, N)) > πS (β, E (β, N)) .

Step 3 This proves Point c). Note first that

πR
(

Ẽ
)
=

N−1

∑
i=0

∫ ti+1(β−ε,N)

ti(β−ε,N)
UR(a∗ne(ti(β− ε, N), ti+1(β− ε, N)) + ε, ω) f (ω) dω.

We have:

dπR
(

Ẽ
)

dε
=

N−1

∑
i=0

d
(∫ ti+1(β−ε,N)

ti(β−ε,N) UR(a∗ne(ti(β− ε, N), ti+1(β− ε, N)) + ε, ω) f (ω) dω
)

dε

 .

By Leibniz rule, the above can be rewritten as

N−1

∑
i=0


∫ ti+1(β−ε,N)

ti(β−ε,N)
dUR(a∗ne(ti(β−ε,N),ti+1(β−ε,N))+ε,ω) f (ω)

dε dω

+UR(a∗ne(ti(β− ε, N), ti+1(β− ε, N)) + ε, ti+1(β− ε, N)) f (ti+1(β− ε, N)) dti+1(β−ε,N)
dε

−UR(a∗ne(ti(β− ε, N), ti+1(β− ε, N)) + ε, ti(β− ε, N)) f (ti(β− ε, N)) dti(β−ε,N)
dε

 .

Note that:∫ ti+1(β−ε,N)

ti(β−ε,N)

dUR(a∗ne(ti(β− ε, N), ti+1(β− ε, N)) + ε, ω) f (ω)
dε

dω

∣∣∣∣
ε=0

=
∫ ti+1(β−ε,N)

ti(β−ε,N)

∂UR(a∗ne(ti(β, N), ti+1(β, N)), ω)

∂a
f (ω) dω

×
(

1− ∂a∗ne(ti(β, N), ti+1(β, N))
∂ti

∂ti(β, N)
∂β

− ∂a∗ne(ti(β, N), ti+1(β, N))
∂ti+1

∂ti+1(β, N)
∂β

)
.

Given the FOCs characterizing a∗ne(ti(β, N), ti+1(β, N)), it follows that for every i ∈
{0, ..., N − 1} , ∫ ti+1(β,N)

ti(β,N)

∂UR(a∗ne(ti(β, N), ti+1(β, N)), ω)

∂a
f (ω) dω = 0
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It follows that

dπR
(

Ẽ
)

dε

∣∣∣∣∣∣
ε=0

=
N−1

∑
i=0

 −UR(a∗ne(ti(β, N), ti+1(β, N)), ti+1(β, N)) f (ti+1(β, N)) ∂ti+1(β,N)
∂β

+UR(a∗ne(ti(β, N), ti+1(β, N)), ti(β, N)) f (ti(β, N)) ∂ti(β,N)
∂β


=

N−1

∑
i=1

[
−UR(a∗ne(ti−1(β, N), ti(β, N)), ti(β, N))

+UR(a∗ne(ti(β, N), ti+1(β, N)), ti(β, N))

]
f (ti(β, N))

∂ti(β, N)
∂β

Given Condition M, ∂ti(β,N)
∂β < 0 for every i ∈ {1, ..., N − 1} . Furthermore, for every

i ∈ {1, ..., N − 1} ,

UR(a∗ne(ti(β, N), ti+1(β, N)), ti(β, N))−UR(a∗ne(ti−1(β, N), ti(β, N)), ti(β, N)) <

US(a∗ne(ti(β, N), ti+1(β, N)), ti(β, N), β)−US(a∗ne(ti−1(β, N), ti(β, N)), ti(β, N), β) = 0.

The equality appearing on the second line holds true by definition because {ti(β, N)}N
i=1

is a standard equilibrium partitional communication strategy.

The inequality appearing on the first line holds true by the following argument. By

Lemma 1, there is a function ŨS(a, ω, b), where b is a scalar parameter, such that 1)

ŨS(a, ω, 1) = US(a, ω, β), 2) ŨS(a, ω, 0) = UR (a, ω) and 3) ŨS
13(a, ω, b) is strictly positive

everywhere. Using furthermore the fact that a∗ne(ti−1(β, N), ti(β, N)) < a∗ne(ti(β, N), ti+1(β, N)),

the inequality follows. �

11 Appendix D

We here prove Proposition 4.

Step 1 This proves Point a). First, set {ti}N−1
i=1 by letting ti =

i
N for i = 1, ..., N. Second,

let ci satisfy
ti + ti+1 + ci

3
=

ti + ti+1

2
+ b, ∀i = 0, ..., N − 1, (13)

so that a∗e (ti, ti+1, ci) = a∗ne(ti, ti+1) + b, ∀i = 0, ..., N − 1. Condition (13) is feasible iff

given any i ∈ {0, ..., N − 1} ,

ti + ti+1

2
+ b ≤ ti + 2ti+1

3
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which is equivalent to b ≤ ti+1−ti
6 . Using the fact that by definition ti+1 − ti =

1
N , this

condition simplifies to b ≤ 1
6N .

Assuming that the above condition is satisfied, the constructed strategy constitutes an

equilibrium iff for any i ∈ {1, ..., N − 1} ,

−
(

ti−1 + ti + ci−1

3
− ti − b

)2

= −
(

ti + ti+1 + ci

3
− ti − b

)2

.

Using (13) as well as the fact that ti =
i
N for i = 1, ..., N, the above is equivalent to((

2i+ 1
2N

+ b
)
− i

N
− b
)2

=

((
2i− 1

2N
+ b
)
− i

N
− b
)2

,

which simplifies to
(

1
2N

)2
=
(
− 1

2N

)2
, which is always true. The obtained condition

6Nb ≤ 1 means that ∀b, there exists an equal intervals equilibrium implementing D(b, N)

if and only if N ≤ Ns(b) =
〈

1
6b

〉
.

Step 2 This proves Point b). As a preliminary comment, note that we will show in the

next step that for b ≤ 1
18 , Ns(b) ≥ 3. Note that

πR(D(b, N)) = −
N

∑
i=1

∫ i
N

i−1
N

(
ω−

(
i−1
N + i

N
2

+ b

))2

dω

= −
N

∑
i=1

(
− 1

12

(
i− 1

N
− i

N

)3

−
(

i− 1
N
− i

N

)
b2

)
= −b2 − 1

12N2 .

It can similarly be shown that πS(b, D(b, N)) = − 1
12N2 . It is immediate that πS(b, D(b, N))

and πR(D(b, N)) are increasing in N.

Step 3 This proves Point c).Note that for b ≤ 1
4 −

1
12

√
7 ∈

(
1

40 , 1
30

)
, it holds true that

1
6b
−
(

1
2b

(
b+

√
b (b+ 2)

))
≥ 1.

It follows that for b ≤ 1
40 , Ns(b) > Nne(b). For b ∈

(
1
40 , 1

30

]
, Ns(b) = 5 while Nne(b) =

4. For b ∈
(

1
30 , 1

24

]
, note that Nne(b) = Ns(b) = 4. For b ∈

(
1
24 , 1

18

]
, note that Ns(b) =

Nne(b) = 3. For b ∈
(

1
18 , 1

12

]
, note that Nne(b) = 3 while Ns(b) = 2.
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Step 4 This proves Point d). It is a priori clear that for any N and N′ ≥ N, πS(b, D(b, N′)) >

πS(b, E(b, N)). Recall that πR(D(b, N)) = −b2 − 1
12N2 and that πR(D(b, N)) is thus in-

creasing in N. On the other hand, πR(E(b, N)) is − 1
12N2 − b2(N2−1)

3 . So

πR(D(b, N))− πR(E(b, N))

= −b2 − 1
12N2 −

(
− 1

12N2 −
b2(N2 − 1)

3

)
=

1
3

b2
(

N2 − 4
)

.

Note that the above expression is weakly (strictly) positive for any N ≥ (>)2. It follows

that R always strictly gains from the transition from E (b, N) to an equilibrium imple-

menting D(b, N′), given N′ ≥ N ≥ 3 while he instead weakly gains from the transition

from E (b, 2) to an equilibrium implementing D(b, 2). �

12 Appendix E

We here prove Proposition 5.

12.1 Points a) and b)

Step 1 This proves Point a). Let 0 < t1 < ... < tN ≤ 1 and set, for every i, ci = ti+1. For

such an Ellsbergian strategy to be incentive compatible, we need that ∀ i = 1, ..., N − 1,(
ti + 2ti+1

3
− ti − b

)2

=

(
ti−1 + 2ti

3
− ti − b

)2

,

which is equivalent to

ti+1 =
3
2

ti −
1
2

ti−1 + 3b. (14)

Solving the above linear difference equation, we obtain a unique solution parameterized

by t1:

ti = 21−i
[
6b− 3b2i+1 + 3bi2i − t1 + 2it1

]
. (15)

Now, pick an N. Setting tN = 1, solve for the (unique) implied t1 which is given by

t̃1(b, N) = −
(
12b− 12

(
2N) b− 2N + 6

(
2N)Nb

)
2 (2N)− 2
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which is a decreasing function of N and b. If this value belongs to (0, 1), there is a

unique threshold profile
{

t̃r(b, N)
}N−1

r=1 constituting an N-intervals maximal ambiguity

equilibrium. Thresholds satisfy, for i = 1, ..., N,

t̃i(b, N) = 21−i

(
6b− 3b2i+1 + 3b(i)2i + (−1+ 2i)

(
−
(
12b− 12

(
2N) b− 2N + 6

(
2N)Nb

)
2 (2N)− 2

))
.

We may now look for the maximal value of b compatible with the existence of an N-

intervals maximum ambiguity equilibrium. Call this bm(N). To find it, solve for b such

that t̃1(b, N) = 0. We find

bm(N) =
1

21−N [6− 3 (2N+1) + 3N2N]
.

Similarly, Nm(b) is the largest positive integer such that t̃1(b, N) ≥ 0.

Step 2 This proves Point b). Note that

bm(N)
bne(N)

=
2N N

2+ 2N(N − 1)
> 1 for N ≥ 2.

Thus, bm(N) > bne (N) , ∀N ≥ 2. It follows that ∀ b ≤ bm(2), there exists a maximal

ambiguity equilibrium as fine as the finest standard equilibrium. Note that bm(2) = 1
3

while bne(2) = 1
4 . Note also that

bm(N + 1)− bs(N) =
1

6N
2N − 1

2N N − 2N + 1
> 0 , ∀N ≥ 2.

12.2 Point c)

Outline Step 1 proves the statement of Point c) for S. It states three facts and shows that

these together imply the statement. In steps 2-5, we prove the three facts invoked in step

1. Step 6 is an equivalent of step 1 that proves the statement of Point c) for R.

Step 1 Given b ≤ bs(N), we slightly abuse notation and denote by respectively πS(D(b, N))

and πR(D(b, N)) the expected payoff of respectively S and R in an equilibrium imple-

menting D(b, N). Given b ≤ bm(N), we similarly denote by respectively πS(M(b, N))

and πR(M(b, N)) the expected payoff of S and R in the unique N-intervals maximal am-

biguity equilibrium. Note that ∀N ≥ 2, πS(D(b, N)) = − 1
12N2 which is constant in b and

note the following three further facts:
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Fact 1: ∀N ≥ 2, πS(M(bs(N), N)) = πS(D (bs(N), N)).

Fact 2: ∀N ≥ 2, πS(M(bs(N), N + 1)) > πS(D(bs(N), N)).

Fact 3: ∀N ≥ 2 and b ∈ (bs(N + 1), bs(N)], πS(M(b, N + 1)) is strictly decreasing in b.

Consider thus any b ≤ bs(2). We know that there is an N ≥ 2 such that b ∈ (bs (N + 1) , bs (N)]

and b ≤ bm(N + 1). Furthermore, it follows from Facts 1, 2 and 3 that for this N,

πS(M(b, N + 1)) > πS(D(b, N)).

We simply prove Facts 1, 2 and 3 in what follows.

Step 2 This step proves Fact 1. Note that the condition defining bs(N) (recalling that

we set ti =
i
N in equal intervals equilibria) is

ti + ti+1

2
+ b =

ti + 2ti+1

3
.

In other words, for the highest possible value of b compatible with the existence of an N-

intervals equal intervals equilibrium, the unique N-intervals equal intervals equilibrium

is actually the unique N-intervals maximum ambiguity equilibrium.

Step 3 This step proves Fact 2. Simply note that

πS(M(bs(N), N + 1))− πS(D(bs(N), N))

=
4(2N − 1)(17

(
2N)− 13)

189(2N+1 − 1)N3 > 0.

Step 4 This step proves Fact 3. Let
{

t̃i(b, N)
}N−1

i=1 be the profile of thresholds charac-

terizing the unique Ellsbergian N-intervals maximal ambiguity equilibrium. Using the

explicit formula derived for thresholds, note that for i = 1, ..., N,

∂t̃i(b, N)
∂b

=
6
(
2N N(1− 2i)− 2ii(1− 2N)

)
2i (2N − 1)

< 0.

Let us now explicitly consider the derivative ∂πS(M(b,N))
∂b . We have:

πS(M(b, N)) =
N−1

∑
i=0

∫ t̃i+1(b,N)

t̃i(b,N)
US(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), ω, b) f (ω) dω.
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The closed form expression for the above expected payoff is complex so that it is more

convenient to work with the general formula. Thus,

dπS (M(b, N))
db

=
N−1

∑
i=0

d
(∫ t̃i+1(b,N)

t̃i(b,N)
US(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), ω, b) f (ω) dω

)
db

=
N−1

∑
i=0


∫ t̃i+1(b,N)

t̃i(b,N)
dUS(a∗e (t̃i(b,N),̃ti+1(b,N),̃ti+1(b,N)),ω,b)

db f (ω) dω

+US(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), t̃i+1(b, N), b) f
(
t̃i+1(b, N)

) ∂t̃i+1(b,N)
∂b

−US(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), t̃i(b, N), b) f
(
t̃i(b, N)

) ∂t̃i(b,N)
∂b


=

N−1

∑
i=0

∫ t̃i+1(b,N)

t̃i(b,N)

dUS(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), ω, b)
db

f (ω) dω,

In order to obtain the last equality, we use the fact that ∀i ∈ {1, ..., N − 1} ,

US(a∗e (t̃i−1(b, N), t̃i(b, N), t̃i(b, N)), t̃i(b, N), b)−US(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), t̃i(b, N), b) = 0,

as well as t̃0(b, N) = 0 and t̃N(b, N) = 1. We now show that for every i ∈ {0, ..., N − 1} ,

∫ t̃i+1(b,N)

t̃i(b,N)

dUS(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), ω, b)
db

f (ω) dω < 0.

Note that for every i ∈ {0, ..., N − 1} ,

∫ t̃i+1(b,N)

t̃i(b,N)

dUS(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), ω, b)
db

f (ω) dω

= ∫ t̃i+1(b,N)

t̃i(b,N)

∂US(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), ω, b)
∂b

f (ω) dω+

∫ t̃i+1(b,N)

t̃i(b,N)

∂US(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), ω, b)
∂a

f (ω) dω

×


∂a∗e (t̃i(b,N),̃ti+1(b,N),̃ti+1(b,N))

∂t̃i

∂t̃i(b,N)
∂b +

∂a∗e (t̃i(b,N),̃ti+1(b,N),̃ti+1(b,N))
∂t̃i+1

∂t̃i+1(b,N)
∂b +

∂a∗e (t̃i(b,N),̃ti+1(b,N),̃ti+1(b,N))
∂ci

∂t̃i+1(b,N)
∂b

 .
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Note first that

∂US(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), ω, b)
∂b

= −∂US(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), ω, b)
∂a

.

The above is true because we have assumed that US(a, ω, b) = −(a − (ω + b))2. Note

now that ∫ t̃i+1(b,N)

t̃i(b,N)

∂US(a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)), ω, b)
∂a

f (ω) dω > 0. (16)

Call this Fact A. We prove this fact in step 5. Finally, note that

∂t̃i(b, N)
∂b

< 0,
∂t̃i+1(b, N)

∂b
< 0,

∂a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N))
∂t̃i

> 0,
∂a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N))

∂t̃i+1
> 0

∂a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N))
∂ci

> 0.

The inequalities on the first line were shown to be true in the beginning of step 4. The

inequality on the third line is proved in Point b) of Lemma 3. The inequalities on the

second line can be proved along similar lines as Point b) of Lemma 3.

Step 5 This proves Fact A. Note that given [x, y] ⊆ [0, 1] and some action a,

∂
(
−
∫ y

x (a− (ω+ b))2
)

∂a
= 2 (y− x)

((
x+ y

2
+ b
)
− a
)

.

The above expression thus has the same sign as
(

x+y
2 + b

)
− a. Recall furthermore that

a∗e (t̃i(b, N), t̃i+1(b, N), t̃i+1(b, N)) =
t̃i(b, N) + 2t̃i+1(b, N)

3
.

Now, note that for i = 0, ..., N − 1,(
t̃i(b, N) + t̃i+1(b, N)

2
+ b
)
−
(

t̃i(b, N) + 2t̃i+1(b, N)
3

)
=

1
12

2N−i 6Nb− 1
2N − 1

,

which is equal to 0 if b = bs(N) and positive if b > bs(N).

Step 6 We now prove the statement of Point c) for R. Note now the following facts:
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Fact I: For N ≥ 2, πR(D(b, N)) = − 1
12N2 − b2 and is thus decreasing in b.

Fact II: ∀N ≥ 2 and b ∈ (bs(N+ 1), bs(N)], πR(M(b, N+ 1)) is strictly decreasing in b.

Fact III: ∀N ≥ 2, πR(M(bs(N), N + 1)) > πR(D(bs(N + 1), N)).

Consider thus any b ≤ bs(2). We know that there is a N such that b ∈ (bs (N + 1) , bs (N)]

and b ≤ bm(N + 1). Furthermore, it follows from facts I, I I and I I I that πR(M(b, N +

1)) > πR(D(b, N)). The (algebraically tedious but conceptually simple) proof of Fact I I

is omitted. To see that Fact I I I holds, note that

πR(M(bs(N), N+ 1))−πR(D(bs(N+ 1), N)) =
12

(21+N−1)2 −
44

(21+N−1) +
32+3N(19+6N)

(1+N)2

252N3 > 0.

�

13 Appendix F

We here prove Proposition 6. We know from the proof of Proposition 5 that Ẽ(b, 2) exists

if and only if b ≤ 1
3 . In Ẽ(b, 2), t1 solves:

t1 + 2
3
− t1 − b = t1 + b− 2t1

3
⇔ t1 =

2
3
− 2b.

πS
(

b, Ẽ(b, 2)
)

is thus:

−
∫ 2

3−2b

0

((
2
(2

3 − 2b
)

3

)
− (ω+ b)

)2

dω−
∫ 1

2
3−2b

((
2
3 − 2b+ 2

3

)
− (ω+ b)

)2

dω,

which is equal to 8
3 b3− 25

9 b2+ 11
27 b− 1

27 . This expression is strictly larger than πS(b, E(b, 1)) =

−b2− 1
12 , ∀b ∈

(
1
4 , 1

3

]
. We have πR

(
Ẽ(b, 2)

)
= − 1

27 +
2
9 b− 4

3 b2 while πR(E(b, 1)) = − 1
12 .

The first expression is larger than the second iff b ≤ 1
12(1+

√
6) ' 0.28.�
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